Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition.
نویسندگان
چکیده
In the epileptic brain, seizure activity induces expression of the blood-brain barrier efflux transporter, P-glycoprotein, thereby limiting brain penetration and therapeutic efficacy of antiepileptic drugs. We recently provided the first evidence that seizures drive P-glycoprotein induction through a pathway that involves glutamate-signaling through the NMDA receptor and cyclooxygenase-2 (COX-2). Based on these data, we hypothesized that selective inhibition of COX-2 could prevent seizure-induced P-glycoprotein up-regulation. In the present study, we found that the highly selective COX-2 inhibitors, NS-398 and indomethacin heptyl ester, blocked the glutamate-induced increase in P-glycoprotein expression and transport function in isolated rat brain capillaries. Importantly, consistent with this, the COX-2 inhibitor, celecoxib, blocked seizure-induced up-regulation of P-glycoprotein expression in brain capillaries of rats in vivo. To explore further the role of COX-2 in signaling P-glycoprotein induction, we analyzed COX-2 protein expression in capillary endothelial cells in brain sections from rats that had undergone pilocarpine-induced seizures and in isolated capillaries exposed to glutamate and found no change from control levels. However, in isolated rat brain capillaries, the COX-2 substrate, arachidonic acid, significantly increased P-glycoprotein transport activity and expression indicating that enhanced substrate flux to COX-2 rather than increased COX-2 expression drives P-glycoprotein up-regulation. Together, these results provide the first in vivo proof-of-principle that specific COX-2 inhibition may be used as a new therapeutic strategy to prevent seizure-induced P-glycoprotein up-regulation at the blood-brain barrier for improving pharmacotherapy of drug-resistant epilepsy.
منابع مشابه
Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling.
Increased expression of drug efflux transporters at the blood-brain barrier accompanies epileptic seizures and complicates therapy with antiepileptic drugs. This study is concerned with identifying mechanistic links that connect seizure activity to increased P-glycoprotein expression at the blood-brain barrier. In this regard, we tested the hypothesis that seizures increase brain extracellular ...
متن کاملRadiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملEffect of intracerebroventricular injection of COX-1 inhibitor (ketoprofen) on PTZ-induced seizures in male rat
Introduction: Ketoprofen is an NSAID and selective COX-1 inhibitor. In our previous study the role of flunixin meglumine, a nonselective COX inhibitor was studied on seizure and its anticonvulsant effects were confirmed. Therefore this research is performed to assess the role of a selective COX-1 inhibitor, ketoprofen in treatment of seizures induced by PTZ. Methods: In this research, male ...
متن کاملP 149: Effect of Glycoprotein IIb/IIIa Inhibition on Acute Ischemic Stroke Injuries
Ischemic stroke accounts for about 87 percent of all cases. It occurs as a result of an obstruction within a vessel of the brain and sudden loss of blood circulation to the corresponding area resulting in the loss of brain function. It is caused by thrombotic or embolic occlusion of an artery and is more common than hemorrhagic stroke. We know that most of the injuries after an acute ischemic s...
متن کاملCo-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance
Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients' survival. Induction of drug efflux due to overexpression of P-glycoproteins is considered as an important leading cause of multidrug resistance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuropharmacology
دوره 56 5 شماره
صفحات -
تاریخ انتشار 2009